Отношение R на множестве X называется рефлексивным, если для любого
. В матрице рефлексивного отношения все элементы главной диагонали равны единице. Примером рефлексивного отношения может служить отношение R ( ≥ ) на множестве чисел.
Отношение R на Х называется антирефлексивным, если из того, что , следует
. Все элементы главной диагонали матрицы такого отношения равны нулю.
Отношение R на Х называется симметричным, если из того, что , следует
. Матрица симметричного отношения – симметричная, т.е.
.
Отношение R на Х называется антисимметричным, если из того, что и
, следует
. Матрица такого отношения обладает следующим свойством: если
, то
.
Отношение R на Х называется транзитивным, если из того, что и
, следует
. Транзитивность отношения R эквивалентна условию
или
.
Транзитивным замыканием отношения R на Х называется отношение, полученное из R следующим образом:
Транзитивное замыкание можно неформально определить как "наименьшее" транзитивное отношение на Х, включающее в себя отношение R. Для любого отношения R его транзитивное замыкание равно пересечению всех транзитивных отношений, содержащих R. R – транзитивное отношение тогда и только тогда, когда оно совпадает со своим транзитивным замыканием, т.е. когда . [3]
Определение нечеткого отношения.
Определение 3.10.
Нечетким отношением R на множестве Х называется нечеткое подмножество декартова произведения , характеризующееся функцией принадлежности
. Значение
этой функции понимается как субъективная мера или степень выполнения отношения
.
Обычное отношение можно рассматривать как частный случай нечеткого, функция принадлежности которого принимает лишь значения 0 или 1.
Приведем пример, иллюстрирующий принципиальное различие обычных и нечетких отношений. Для этого лучше всего рассмотреть два "похожих" отношения на одном и том же интервале [0, 1], причем одно из этих отношений обычное (четкое), а другое нечеткое. В качестве обычного отношения возьмем отношение R ( ≥ ), а в качестве нечеткого отношения возьмем отношение (>>) ("много больше"). [3]
На приведенном рис. 3.7, а пары (x,y) из интервала [0, 1], связанные отношением R (т.е. x, y – такие, что ), образуют множество, показанное штриховкой. Диагональ единичного квадрата является границей этого множества: все пары (x, y), находящиеся за этой диагональю (вне штрихованной области), не связаны данным отношением.
Популярные материалы:
Проблемы развития кредитования субъектов малого бизнеса в Республики
Казахстан
Современная практика кредитования заемщиков субъектов малого бизнеса имеет ряд сложностей: а) анализ кредитоспособности индивидуальных клиентов на стадии предшествующей выдачи кредита, проводят далеко не все коммерческие банки; методики анализа кредитоспособности не всегда отвечают требованиям прак ...
Проблемы и перспективы потребительского кредитования
Потребительский кредит это одна из наиболее удобных для физических лиц форм кредитования. В последние годы потребительское кредитование в России развивалось стремительными темпами, количество игроков на рынке росло в геометрической прогрессии. Складывающаяся ситуация явилась одной из основных причи ...
Определение векселя и участники вексельных операций
Вексель (нем. Wechsel – перемена, размен) письменное долговое обязательство, оформляемое по нормам особого (вексельного) законодательства, выдаваемое заемщиком кредитору[1]. Вексель – это формальный документ, и отсутствие любого из обязательных реквизитов делает его недействительным; это безусловно ...
Ценные бумаги представляют собой денежные документы, удостоверяющие права собственности или отношения займа владельца документа по отношению к лицу, выпустившему такой документ (эмитенту).
Перестройка внешнеэкономической деятельности нашей страны требует соответствующих изменений в работе коммерческих банков во всем многообразии их внешних и внутренних связей.