Финансы » Управление банковскими ресурсами на основе теории нечетких множеств » Нечеткие отношения

Нечеткие отношения
Страница 2

Отношение R на множестве X называется рефлексивным, если для любого . В матрице рефлексивного отношения все элементы главной диагонали равны единице. Примером рефлексивного отношения может служить отношение R ( ≥ ) на множестве чисел.

Отношение R на Х называется антирефлексивным, если из того, что , следует . Все элементы главной диагонали матрицы такого отношения равны нулю.

Отношение R на Х называется симметричным, если из того, что , следует . Матрица симметричного отношения – симметричная, т.е. .

Отношение R на Х называется антисимметричным, если из того, что и , следует . Матрица такого отношения обладает следующим свойством: если , то .

Отношение R на Х называется транзитивным, если из того, что и , следует . Транзитивность отношения R эквивалентна условию или .

Транзитивным замыканием отношения R на Х называется отношение, полученное из R следующим образом:

Транзитивное замыкание можно неформально определить как "наименьшее" транзитивное отношение на Х, включающее в себя отношение R. Для любого отношения R его транзитивное замыкание равно пересечению всех транзитивных отношений, содержащих R. R – транзитивное отношение тогда и только тогда, когда оно совпадает со своим транзитивным замыканием, т.е. когда . [3]

Определение нечеткого отношения.

Определение 3.10.

Нечетким отношением R на множестве Х называется нечеткое подмножество декартова произведения , характеризующееся функцией принадлежности . Значение этой функции понимается как субъективная мера или степень выполнения отношения .

Обычное отношение можно рассматривать как частный случай нечеткого, функция принадлежности которого принимает лишь значения 0 или 1.

Приведем пример, иллюстрирующий принципиальное различие обычных и нечетких отношений. Для этого лучше всего рассмотреть два "похожих" отношения на одном и том же интервале [0, 1], причем одно из этих отношений обычное (четкое), а другое нечеткое. В качестве обычного отношения возьмем отношение R ( ≥ ), а в качестве нечеткого отношения возьмем отношение (>>) ("много больше"). [3]

На приведенном рис. 3.7, а пары (x,y) из интервала [0, 1], связанные отношением R (т.е. x, y – такие, что ), образуют множество, показанное штриховкой. Диагональ единичного квадрата является границей этого множества: все пары (x, y), находящиеся за этой диагональю (вне штрихованной области), не связаны данным отношением.

Страницы: 1 2 3 4 5 6 7

Популярные материалы:

Сущность фондового рынка и ценных бумаг
Рынок ценных бумаг – это сложная организационно – правовая и социально–экономическая структура, которая имеет много различных характеристик. Его структуру можно рассматривать с различных сторон, потому что он может быть условно разделён на отдельные сегменты по различным признакам: ¾ по стру ...

Анализ ипотечного кредитования в рамках реализации жилищных программ
В современной России старые методы и подходы в решении жилищных проблем населения, которые и раньше не гарантировали даже «малогабаритного» счастья, теперь вообще не работают. Поэтому нет нужды вспоминать прошлое – надо думать о будущем и создавать жизнеспособные и эффективные механизмы решения «кв ...

Пути совершенствования кредитования субъектов малого бизнеса коммерческими банками Республики Казахстан
В отличие от развитых зарубежных стран, где основная финансовая поддержка малого бизнеса идет по линии государства, в Казахстане возможности государственного бюджета, как известно, ограничены. В этих условиях предлагается переход к коммерческим механизмам привлечения средств. В целях широкого привл ...

Актуальное

Ценные бумаги

Ценные бумаги

Ценные бумаги представляют собой денежные документы, удостоверяющие права собственности или отношения займа владельца документа по отношению к лицу, выпустившему такой документ (эмитенту).

Валютные операции

Валютные операции

Перестройка внешнеэкономической деятельности нашей страны требует соответствующих изменений в работе коммерческих банков во всем многообразии их внешних и внутренних связей.

Меню сайта

Copyright © 2022 - All Rights Reserved - www.castbanking.ru